PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain.
نویسندگان
چکیده
We have observed, in our previous studies, that fluid flow increases gap junction-mediated intercellular coupling and the expression of a gap junction protein, connexin 43, in osteocyte-like MLO-Y4 cells. Interestingly, this stimulation is further enhanced during the poststress period, indicating that a released factor(s) is likely to be involved. Here, we report that the conditioned medium obtained from the fluid flow-treated MLO-Y4 cells increased the number of functional gap junctions and connexin 43 protein. These changes are similar to those observed in MLO-Y4 cells directly exposed to fluid flow. Fluid flow was found to induce PGE(2) release and increase cyclooxygenase 2 expression. Treatment of the cells with PGE(2) had the same effect as fluid flow, suggesting that PGE(2) could be responsible for these autocrine effects. When PGE(2) was depleted from the fluid flow-conditioned medium, the stimulatory effect on gap junctions was partially, but significantly, decreased. Addition of the cyclooxygenase inhibitor, indomethacin, partially blocked the stimulatory effects of mechanical strain on gap junctions. Taken together, these studies suggest that the stimulatory effect of fluid flow on gap junctions is mediated, in part, by the release of PGE(2). Hence, PGE(2) is an essential mediator between mechanical strain and gap junctions in osteocyte-like cells.
منابع مشابه
Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor.
Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells fu...
متن کاملGeneration and function of osteocyte dendritic processes.
Osteocytes in vivo possess a distinctive morphology – that of dendricity – connecting osteocyte to osteocyte creating the osteocyte syncytium and also connecting osteocytes with cells on the bone surface (see Figure 1). It is thought that bone fluid surrounding the dendrite within the canaliculi is responsible for the transmission of mechanical strain through fluid flow shear stress. Dendrites ...
متن کاملSpatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow.
Mechanical stimuli can trigger intracellular calcium (Ca(2+)) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca(2+) signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca(...
متن کاملIsolation and culture of primary osteocytes from the long bones of skeletally mature
www.BioTechniques.com 361 Vol. 52 | No. 6 | 2012 The coordinated actions of three different types of bone cells are required for bone remodeling in response to mechanical loading. On the surface of bone are osteoblasts, which form new bone, and osteoclasts, which remove bone. Located deeper within the bone matrix and housed in cave-like lacunae, are osteocytes, which function as the mechanosens...
متن کاملA Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology.
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 142 8 شماره
صفحات -
تاریخ انتشار 2001